विद्युत्जनित्र (Electric Generator) विद्युत् शक्ति का उत्पादन करनेवाला यंत्र है। यह वस्तुत: यांत्रक ऊर्जा को विद्युत् ऊर्जा में रूपांतरित करनेवाली मशीन है। किसी भी स्रोत से प्राप्त की गई यांत्रिक ऊर्जा को विद्युत् ऊर्जा में परिवर्तित करना संभव है। यह ऊर्जा, जलप्रपात के गिरते हुए पानी से अथवा कोयला जलाकर उत्पन्न की गई ऊष्मा द्वारा भाव से, या किसी पेट्रोल अथवा डीज़ल इंजन से प्राप्त की जा सकती है। ऊर्जा के नए नए स्रोत उपयोग में लाए जा रहे हैं। मुख्यत:, पिछले कुछ वर्षों में परमाणुशक्ति का प्रयोग भी विद्युत्शक्ति के लिए बड़े पैमाने पर किया गया है, और बहुत से देशों में परमाणुशक्ति द्वारा संचालित बिजलीघर बनाए गए हैं। ज्वार भाटों एवं ज्वालामुखियों में निहित असीम ऊर्जा का उपयोग भी विद्युत्शक्ति के जनन के लिए किया गया है। विद्युत्शक्ति के उत्पादन के लिए इन सब शक्ति साधनों का उपयोग, विशालकाय विद्युत् जनित्रों द्वारा ही हाता है, जो मूलत: फैराडे के 'चुंबकीय क्षेत्र में घूमते हुए चालक पर वेल्टता प्रेरण सिद्धांत पर आधारित है।

फ़ैराडे का यह सिद्धांत निम्नलिखित रूप में व्यक्त किया जा सकता है :

'यदि कोई चालक किसी चुंबकीय क्षेत्र में घुमाया जाए, तो उसमें एक वि.वा.ब. (विद्युत् वाहक बल) की उत्पत्ति होती है; और संवाहक का परिपथ पूर्ण होने की दशा में उसमें धारा का प्रवाह भी होने लगता है'

इस प्रकार विद्युत् शक्ति के जनन के लिए तीन मुख्य बातों की आवश्यकता है :

१.����� चुंबकीय क्षेत्र, जिसमें चालक घुमाया जाए,

२.����� चालक तथा

३.����� चालक को चुंबकीय क्षेत्र में घुमानेवाली यांत्रिक शक्ति।

यह भी स्पष्ट है, कि विद्युत्शक्ति का उत्पादन व्यावहारिक बनाने के लिए चालक में प्रेरित वि.वा.ब. की मात्रा पर्याप्त होनी चाहिए। इसकी मात्रा, चालक की लंबाई, चुंबकीय क्षेत्र की तीव्रता (जिसे अभिवाह घनत्व के रूप में मापा जाता है) और चालक के वेग पर निर्भर करती है। वास्तव में इसे निम्नलिखित समीकरण से व्यक्त किया जा सकता है :

वि.वा.ब. = Bv१०- वोल्ट,

जहाँ B=चुंबकीय अभिवाह का घनत्व, १=चालक की लंबाई तथा v=चालक का वेग (क्षेत्र के लंबवत्)।

इससे यह स्पष्ट हो जाता है कि व्यावहारिक रूप में चालक की लंबाई एवं वेग दोनों ही बहुत अधिक होने चाहिए और साथ ही चुंबकीय अभिवाह घनत्व भी अधिकतम हो। चुंबकीय क्षेत्र की अधिकतम हो। चुंबकीय क्षेत्र की अधिकतम सीमा उसके संतृप्त होने के कारण निर्धारित होती है। चालक की लंबाई बढ़ाना भी व्यावहारिक रूप से संभव नहीं, परंतु एक से अधिक चालक को इस प्रकार समायोजित किया जा सकता है कि उनमें प्रेरित वि.वा.ब. जुड़कर व्यावहारिक बन जाए। वस्तुत: जनित्र में एक चालक के स्थान पर चालक का एक तंत्र होता है, जो एक दूसरे से एक निर्धारित योजना के अनुसार संयोजित होते हैं। इन चालकों को धारण करनेवाला भाग आर्मेचर (Armature) कहलाता है और इनकी संयोजन विधि को आर्मेचर कुंडलन (Armature Winding) कहते हैं।

वेग अधिक होने से, घूमनेवाले चालकों पर अपकेंद्र बल (centrifugal force) बहुत अधिक हो जाता है, जिसके कारण आर्मेचर पर उनकी व्यवस्था भंग हो जा सकती है। अत: इन्हें आर्मेचर पर बने खाँपों (slots) में रखा जाता है। आर्मेचर चालकों को धारण करने के साथ ही उनको घुमाता भी है, जिसके लिए उसका शाफ्ट (shaft) यांत्रिक ऊर्जा का संभरण करनेवाले यंत्र के शाफ्ट से युग्मित (coupled) होता है। यह यंत्र पानी से चालनेवाला टरबाइन, या भाप से चालनेवाला टरबाइन या इंजन, हो सकता है। किसी भी रूप में उपलब्ध यांत्रिक ऊर्जा को आर्मेचर का शाफ्ट घुमाने के लिए प्रयोग किया जा सकता है। इस प्रकार विभिन्न प्रकार के यंत्र जनित्र को चलाने के लिए प्रयुक्त किए जाते हैं। इन्हें प्रधान चालक (Prime Mover) कहते हैं। विभिन्न प्रकार के इंजन, जैसे वाष्प इंजन, डीजल इंजन, पेट्रोल इंजन, गैस टरबाइन इत्यादि मशीनें, प्रधान चालक के रूप में प्रयुक्त की जाती हैं और इनकी यांत्रिक ऊर्जा को जनित्र द्वारा विद्युत् ऊर्जा में परिवर्तित किया जाता है।

आर्मेचर चुंबकीय पदार्थ का बना होता है, जिससे चुंबकीय क्षेत्र के अभिवाह का वाहक हो सके। सामान्यत: यह एक विशेष प्रकार के इस्पात का बना होता है, जिसे आर्मेचर इस्पात ही कहते हैं।

चुंबकीय क्षेत्र उत्पन्न करने के लिए भी विद्युत् का ही प्रयोग व्यावहारिक रूप में किया जाता है, क्योंकि इससे स्थायी चुंबक की अपेक्षा कहीं अधिक तीव्रता का चुंबकीय क्षेत्र उत्पन्न किया जा सकता है और क्षेत्रधारा का विचरण कर सुगमता से क्षेत्र का विचरण किया जा सकता है। इस प्रकार जनित वोल्टता का नियंत्रण सरलता से किया जा सकता है। चुंबकीय क्षेत्र उत्पन्न करने के लिए क्षेत्र चुंबक (field magnets) होते हैं, जिनपर क्षेत्रकुंडली वर्तित होती है। इन कुंडलियों में धारा के प्रवाह से चुंबकीय क्षेत्र की उत्पत्ति होती है (देखें त्रि १.)। एकसम क्षेत्र के लिए क्षेत्र चुंबकों का आकार कुछ गोलाई लिए होता है और उनके बीच में आर्मेचर घूमता है। आर्मेचर तथा क्षेत्र चुंबकों के बीच वायु अंतराल (air gap) न्यूनतम होना चाहिए, जिससे क्षेत्रीय अभिवाह का अधिकांश आर्मेचर चालकों को काट सके और आर्मेचर में जनित वोल्टता अधिकतम हो सके।

क्षेत्र कुंडली में धारा प्रवाह को उत्तेजन (Excitation) कहते हैं। यह उत्तेजन किसी बाहरी स्रोत (बैटरी शृखंला अथवा विद्युत् के उस जनित्र के अलावा कोई दूसरे स्रोत)से संयोजित करने पर किया जा सकता है अथवा स्वयं उसी जनित्र में उत्पन्न होनेवाली धारा का ही एक अंश उत्तेजन के लिए भी प्रयुक्त किया जा सकता है। बाहरी स्रोत से उत्तेजित किए जानेवाले जनित्र को बाह्य उत्तेजित जनित्र कहा जाता है, और स्वयं उसी जनित्र में जनित धारा का भाग उपयोग करनेवाले जनित्र को स्वत:उत्तेजित जनित्र (Self-excited Generator) कहा जाता है। स्वत: उत्तेजन की प्रणालियाँ भी क्षेत्र कुंडली और आर्मेचर के सयोजनों के अनुसार भिन्न भिन्न होती हैं। यदि क्षेत्र कुंडली आर्मेचर से श्रेणी (series) में संयोजित हों, तो उसे श्रेणी जनित्र (Series Generator) कहा जाता है। यदि दोनों में पार्श्व संबंधन हो, तो उसे शंट जनित्र (Shunt Generator) कहते हैं। यदि क्षेत्र कुंडली के कुछ वर्त आर्मेचर से श्रेणी में और कुछ उससे पार्श्व संबंधित हों, तो ऐसे जनित्र को संयुक्त जनित्र (Compound Generator) कहते हैं (देखें चित्र २.)। उत्तेजन की इन विभिन्न विधियों से विभिन्न लक्षण प्राप्त होते हैं। बाह्य उत्तेजित जनित्र में क्षेत्रधारा आर्मेचर धारा अथवा भारधारा पर निर्भर नहीं करती। अत: उसमें जनित वोल्टता भार (load) विचरण से स्वतंत्र होती है। यदि क्षेत्रधारा को एक समान रखा जाए, और जनित्र में जनित वोल्टता भी एक समान रहेगी। शंट जनित्र में भी लगभग ऐसा ही लक्षण प्राप्त होता है और भार विचरण का प्रभाव जनित वोल्टता पर अधिक नहीं होता। श्रेणी जनित्र में, भारधारा ही आर्मेचर और क्षेत्र कुंडलियों में प्रवाहित होती है। अत:, यह क्षेत्रधारा भार पर निर्भर करती है और इस प्रकार जनित वोल्टता भार बढ़ने के साथ बढ़ती जाती हैं।

संयुक्त जनित्र में शंट एवं श्रेणी जनित्रों के बीच के लक्षण होते हैं। क्षेत्र कुंडली के शंट और श्रेणी वर्तों का व्यवस्थापन कर उनके बीच का कोई भी लक्षण प्राप्त किया जा सकता है। व्यवहार में संयुक्त जनित्रों का ही अधिक प्रयोग होता है।

चुंबकीय क्षेत्र में एकसमान वेग से घूमनेवाले चालक में जनित वोल्टता, चालक के चुंबकीय अभिवाह को काटने की गति पर निर्भर करती है। यह गति, वस्तुत:, किसी क्षण भी चालक के चुंबकीय अभिवाह के सापेक्ष स्थित पर निर्भर करती है। जब चालक एकसमान वेग से घूम रहा हो, तो वह एक चक्कर में दो बार अभिवाह के लंबवत् होगा, और इस स्थिति में वह अधिकतम अभिवाह काटेगा, तथा जब वह कोई भी अभिवाह नहीं काटेगा, दो बार उसके समांतर होगा। इस प्रकार एक चक्कर में दो बार उसमें जनित वोल्टता शून्य और अधिकतम के बीच विचरण करेगी, जैसी चित्र ३. में दिखाया गया है।इस प्रकार के विचरण को प्रत्यावर्ती विचरण कहते हैं। आर्मेचर चालकों में भी इसी प्रकार की प्रत्यावर्ती वोल्टता जनित होती है और उसे दिष्ट रूप देने के लिए दिक्परिवर्तक (commutator) का प्रयोग किया जाता है।

दिक्परिवर्तक आर्मेचर के शाफ्ट पर ही आरोपित होता है। उसमें बहुत से ताम्रखंड (copper segments) होते हैं, जो एक दूसरे से विद्युतरुद्ध (insulated) होते हैं। आर्मेचर के वर्तन के अंत्यसंयोजन (end connection) इन खंडों से संयोजित होते हैं। दिक्परिवर्तक से संस्पर्श करनेवाले दो बुरुश होते हैं, जो आर्मेचर में जनित वोल्टता द्वारा प्रवाहित होनेवाली धारा को बाहरी परिपथ से संयोजित करते हैं। आर्मेचर चालकों का दिक्परिवर्तक से संयोजन इस प्रकार किया जाता है कि दोनों बुरुशों द्वारा इकट्ठी की जानेवाली धारा एक ही दिशा की होती है। इस प्रकार एक बुरुश धनात्मक धारा इकट्ठी करता है और दूसरा ऋणात्मक। इस आधार पर बुरुशों को भी धनात्मक एवं ऋणात्मक कहा जाता है। वस्तुत:, बुरुश विद्युत्धारा के टर्मिनल हैं, जो भार को जनित्र से संबद्ध करते हैं। ये बुरुशधारक (brush holder) पर आरोपित होते हैं और दिक्पविर्तक पर इनकी स्थिति बुरुश धारक द्वारा व्यवस्थापित की जा सकती है।

जैसे जैसे विद्युत् का प्रयोग बढ़ता गया, जनित्रों का आकार एवं जनित वोल्टता में भी वृद्धि होती गई। परंतु उपर्युक्त प्ररूप के जनित्रों में, आर्मेचर घूमनेवाला होने के कारण उसके आकार में बहुत वृद्धि करना संभव नहीं था। इसलिए उच्च वोल्टता जनित करनेवाले प्रत्यावर्ती धारा के जनित्र बनाए गए, जिनमें आर्मेचर स्वैतिक था और क्षेत्र परिभ्रमणशील। वस्तुत:, वोल्टता जनन के लिए यह आवश्यक नहीं कि चालक ही चुंबकीय क्षेत्र में घूमे। घूमते हुए चुंबकीय क्षेत्र में स्थित चालक में भी वोल्टता प्रेरित होगी, क्योंकि इस दशा में भी वह चुंबकीय अभिवाह को काट रहा है। अत: इस सिद्धांत पर, स्थैतिक आर्मेचर और परिभ्रमण क्षेत्र द्वारा वोल्टता जनित हो सकती है। यह वोल्टता प्रत्यावर्ती प्ररूप की होगी और आर्मेचर चालक तथा क्षेत्र की सापेक्ष स्थिति पर निर्भर करेगी। प्रत्यावर्ती धारा जनित्र, सामान्यत:, स्थैतिक आर्मेचर और परिभ्रमणशील क्षेत्र के सिद्धांत पर आधारित होते हैं। इनमें क्षेत्र चुंबक और कुंडलियाँ परिभ्रमणशील बनाई जाती हैं तथा आर्मेचर उनको बाहर से घेरे होता है। आर्मेचर में कटे खाँचों (slots) में चालक स्थित होते हैं। आर्मेचर के स्थैतिक होने के कारण और बाहर की ओर होने से, उसका आकार काफी बढ़ाया जा सकता है, जिसका मतलब है, उसमें चालक संख्या काफी अधिक हो सकती है। क्षेत्र अंशक सापेक्षतया छोटे होते हैं और उन्हें अधिक वेग पर घुमाया जाना, व्यावहारिक रूप में, कोई कठिनाई नहीं उत्पन्न करता। इन कारणों से प्रत्यावर्ती धारा जनित्रों में उच्च वोल्टता जनित करना संभव है, और ये साधारणतया ११,००० वोल्ट पर प्रवर्तित किए जाते हैं।

इन जनित्रों में बुरुशों के स्थान पर सर्पी वलय (slip rings) होते हैं, जो क्षेत्र कुंडलियों को उत्तेजित करने के लिए धारा पहुँचाते हैं। क्षेत्र के परिभ्रमणशील होने के कारण उन्हें दिष्ट धारा द्वारा उत्तेजन करना आवश्यक है। उत्तेजन धारा या तो बाहरी स्रोत से प्राप्त की जाती है, अथवा उसी शाफ्ट पर आरोपित एक छोटे से दिष्ट धारा जनित्र से, जिसे उत्तेजक (Exciter) कहते हैं। उत्तेजन वोल्टता साधारणतया ११० अथवा २२० वोल्ट ही होती है। सभी बड़े जनित्रों में उत्तेजक का संभरण होता है, जिससे उत्तेजक के लिए अलग से दिष्ट धारा स्रोत की आवश्यकता न रहे।

प्रत्यावर्ती धारा जनित्रों को निर्धारित वेग पर ही प्रवर्तन करना होता है, जो उनमें जनित वोल्टता की आवृत्ति (frequency) एवं क्षेत्र ध्रुवों की संख्या पर निर्भर करता है। इसे निम्नलिखित समीकरण से व्यक्त किया जा सकता है :

यहाँ n=परिक्रमण प्रति मिनट, f=आवृत्ति (चक्र प्रति सेकंड) तथा p=ध्रुव संख्या। इस प्रकार, ५० चक्रीय आवृत्ति के लिए चार ध्रुवी मशीन १,५०० परिक्रमण प्रति मिनट के वेग से प्रवर्तन करेगी और दो ध्रुवी मशीन ३,००० परिक्रमण प्रति मिनट के वेग से। यदि निर्धारित वेग एक समान रहा, तो आवृत्ति में अंतर आ जाएगा। सामान्यत: विद्युत् संभरण निर्धारित वोल्टता और आवृत्ति के होते हैं। अत: आवृत्ति स्थिर रखने के लिए जनित्र का वेग एकसा न रखना आवश्यक है, और यह वेग उसकी ध्रुवसंख्या के अनुसार निश्चित होता है। भारत तथा दूसरे कॉमनवेल्थ देशों में विद्युतसंभरण की आवृत्ति सामान्यत: ५० चक्र प्रति सेकंड निश्चित है। अमरीका तथा दूसरे देशों में ६० चक्रीय आवृत्ति प्रयोग की जाती है। आवृत्ति के अनुसार विभिन्न ध्रुवों के जनित्रों का वेग भी निश्चित होता है, जिसे समक्रमिक वेग कहते हैं।

उपर्युक्त आधार पर, वेग के अनुसार इन जनित्रों के दो मुख्य प्ररूप होते हैं : एक तो टर्बोजनित्र (Turbo Generators), जिन्हें वाष्प टरबाइन से चलाया जाता है और उच्च वेग पर प्रवर्तित करते हैं तथा दूसरे जलविद्युत् जनित्र (Hydroelectric Generators), जो सामान्यत: कम वेग पर प्रवर्तित किए जाते हैं। कुछ का वेग तो १२५ परिक्रमण प्रति मिनट तक होता है। इनमें ५० चक्रीय आवृत्ति के लिए ४८ ध्रुव होते हैं। टर्वोजनित्र में ध्रुव संख्या २ या ४ से अधिक नहीं होती। बड़े जनित्रों में केवल २ ध्रुव ही होते हैं और वे ३,००० परिक्रमण प्रति मिनट पर प्रवर्तन करते हैं। इस अंतर के साथ साथ इनकी रचना में भी बहुत अंतर होता है। अधिक ध्रुवोवाली मशीन का रोटर (rotor) काफी बड़ा होता है। उसकी रचना एक गतिपालक चक्र (fly wheel) के समान होती है, जो मध्य भाग से साइकिल के पहिऐ की भाँति स्पोकों (spokes) पर आरोपित होता है और ध्रुव गोलाई में चारों ओर लगे होते हैं। इसे सैलिएंट ध्रुव (saliant pole) वाला रोटर कहते हैं। इसके विपरीत, टर्बो जनित्र का रोटर बहुत लंबा और बेलनाकार होता है। इसमें ध्रुव निकले हुए नहीं होते, वरन् बेलनाकार रोटर में बने खाँचों में अवस्थित क्षेत्र कुंडलियों द्वारा बनते हैं। आकृति के अनुरूप इस प्रकार के रोटर को बेलनाकार (cylindrical) रोटर अथवा चिकना (smooth) रोटर कहते हैं।

टर्बोजनित्र के उच्च वेग पर प्रवर्तित करने के कारण, इनमें वेयरिंग के स्नेहन (lubrication) और संवातन (ventilation) की समस्याएँ अत्यंत महत्वपूर्ण होती हैं। जलविद्युत् जनित्रों में वेयरिंग पर बहुत अधिक भार होने के कारण (रोटर बहुत बड़ा और भारी होता है) तथा पार्श्व बल के लगने के कारण, स्नेहन की समस्या जटिल होती है, परंतु संवातन स्वयं अपने आप ही पर्याप्त हो जाता है। स्नेहन के लिए तेल पंप द्वारा तेल चलनशील भागों में, जहाँ स्नेहन आवश्यक होता है, दाब (pressure) के साथ भेजा जाता है। तेल साफ करने के लिए तेल फिल्टर भी आवश्यक सहायक (auxiliary) है। स्नेहन दाब घट जाने पर, मशीन के सक्रिय रूप से बंद हो जाने की भी व्यवस्था होती है।

टर्बोजनित्रों में संवातन के लिए बहुधा वलित संवातन (forced ventilation) का प्रयोग किया जाता है। आर्मेचर और रोटर में वाहिनियाँ (ducts) इस प्रकार बनी होती है कि एक ओर से हवा खिंचकर इन वाहिनियों में होती हुई और मशीन को ठंढा करती हुई दूसरी ओर को निकल जाती है। उच्च वेग पर इस क्रिया में सहायता तो मिलती है, परंतु बड़े बड़े जनित्रों में यह प्राकृतिक रूप से संवातन पर्याप्त नहीं होता और हवा को दबाव के द्वारा मशीन में भेजा जाता है। धूल और नमी से मशीन को बचाने के लिए, संवाहन का बंद तंत्र (closed system of ventilation) प्रयुक्त होता है। इसमें उसी वायु को बार बार प्रयुक्त किया जाता है और गरम होने पर, वायुशीतक (air cooler) द्वारा उसे ठंडा कर लिया जाता है और फिर उसे दबाव के साथ मशीन में संवातन के लिए भेजा जाता है। बड़े जनित्रों में संवातन के लिए वायु के स्थान पर हाइड्रोजन गैस का भी प्रयोग किया जाता है। हाइड्रोजन वायु से १४ गुना हल्का होता है। अत:, संवातन के लिए इसे प्रयोग करने से वायव्य हानि (windage loss) कम हो जाती है। ऊष्मा निष्कासन का भी यह वायु से अधिक प्रभावी माध्यम है। परंतु वायु के साथ मिलकर हाइड्रोजन विस्फोटक हो सकता है और इसे बचाने के लिए पर्याप्त सावधानी रखी जाती है।

विद्युत्जनित्र समय के साथ साथ, बहुत बड़े बड़े आकार के बनने लगते हैं। ५०,००० से १,५०,००० किलोवाट की क्षमतावाले जनित्र अब सामान्य हो गए हैं। ये निरंतर प्रवर्तन करनेवाली मशीनें हैं, इसलिए इनकी संरचना भी अत्यंत मानक आधार (exacting standards) पर होती है। मुख्यत:, यह स्वत: कार्यकारी मशीन होती है, और इसके सारे प्रवर्तन दूरस्थ नियंत्रण (remote control) द्वारा नियंत्रित किए जा सकते हैं। क्षेत्र धारा के विचरण से वोल्टता नियंत्रण सुगमता से किया जा सकता है। भार के अनुरूप निवेश (input) स्वयं ही नियंत्रित हो जाता है। इन सब कारणों से वर्तमान विद्युत् जनित्र बहुत ही दक्ष एवं विश्वसनीय होते हैं। वास्तव में इनके विश्वसनीय प्रवर्तन के कारण ही विद्युत् संभरण को विश्वसनीय बनाया जाना संभव हो सका है। (राम कुमार गर्ग)