वायुगतिकी (Aerodynamics) गतिविज्ञान की वह शाखा है जिसमें वायु तथा अन्य गैसीय तरलों (gaseous fluids) की गति का और इन तरलों के सापेक्ष गतिवान ठोसों पर लगे बलों का विवेचन होता है। इस विज्ञान के सार्वाधिक महत्वपूर्ण अनुप्रयोगों में से एक अनुप्रयोग वायुयान की अभिकल्पना है। सभी गैसों में श्यानता (viscosity), (देखें श्यानता) और संपीड्यता (compressibility), दो गुण न्यूनाधिक मात्रा में होते हैं। तीसरा गुणा समांगता (homogeneity) का है। यद्यपि वायु विविक्त अणुओं (discrete molecules) से बनी होती है, इसे संतत माध्यम अथवा सांतत्यक (continuum) मान लेने में त्रुटि तब तक उपेक्षीयणीय रहती है, जब तक वह अत्यधिक विरल न हो। सांतत्य माने बिना सैद्वांतिक उपचार प्राय: असंभव सा ही है। श्यानताहीन, अर्थात् घर्षणहीन, असंपीड्य तथा समांग तरल को परिपूर्ण तरल (Perfect fluid) कहते हैं। जल और ध्वनि वेग से कम वेगवती (३०० मील प्रति घंटा तक की) वायु दोनों परिपूर्ण तरल की अपेक्षाएँ, केवल पिंडपृष्ठ के निकटवर्ती प्रांत को छोड़कर, जहाँ श्यानताप्रभाव अत्यंत ही महत्त्वपूर्ण होते हैं, पूरी करती हैं। कम वेगवाले वायुप्रवाह के वायुगतिविज्ञान के गणितीय सिद्धांत प्राय: द्रवगति विज्ञान (देखें द्रवगति विज्ञान) जैसे हैं। वायुगति विज्ञान की क्लिष्टतर समस्याओं का हल परिपूर्ण तरल की मान्यता पर प्राप्त हल में श्यानताजन्य अतिरिक्त प्रभाव जोड़ देने पर मिल जाता है। स्थान तरलों के वायुगतिविज्ञान में सर्वाधिक महत्तावाला सिद्धांत परिसीमा स्तर (boundary layer) सिद्धांत है, जिसके आधार पर वायु में गतिमान पिंड में त्वक्-घर्षण-कर्ष (skin friction drag) की व्याख्या दी जाती है।

संपीड्य तरल का गतिविज्ञान - जब वायु में गतिवान पिंड का वेग ध्वनि वेग के समीप आ जाता है, या उससे भी अधिक हो जाता हैं तब धनत्व और ताप में परिवर्तनों का प्रभाव पिंड पर क्रियान्वित दाबबलों की व्याख्या में महत्वपूर्ण हो जाता है। तब तरल को असंपीड्य नहीं माना जा सकता और दाब, घनत्व तथा ताप के पारस्परिक संबंध का ज्ञात होना आवश्यक है। संपीड्य प्रवाह के वायुगति विज्ञान का व्यावहारिक अनुप्रयोग प्रक्षेप्यों के बाह्य क्षेपण विज्ञान (Ballistics) में और तीव्रगामी वायुयानों अथवा उनके नोदकों (propellers) की उड़ान-तकनीकी में है। इसका उपयोग शक्ति-संयंत्र (Power Plant) की डिज़ाइन में, वाष्प तथा गैस टरबाइन और जेट-नोदन एककोंवाले प्रवाह के अध्ययन में किया गया है।

पिंडवेग और तरलीय ध्वनिवेग के अनुपात को मेक संख्या कहते हैं। चूँकि किसी तरल में ध्वनिवेग तरलघनत्व के सापेक्ष दाब परिवर्तन दर की माप है, मेक संख्या M तरल की संपीड्यता का सूचक है। सिद्ध किया जा सकता है कि यदि -M> 1, अर्थात् पराध्वानिक प्रवाह में तुंड (nozzle), वाहिनी (duct), अथवा धारा रेखाओं के बीच क्षेत्रफल वेगवर्धन के साथ बढ़ना चाहिए। इसके विपरीत स्थिति अवध्वानिक प्रवाह के लिए है।

विविध प्रकार के प्रवाह - तरल की ऐसी गति को, जिसमें समय के साथ वेग और दिशा कोई नहीं बदलती, अपरिवर्ती प्रवाह (Steady flow) कहते हैं, अन्यथा उसे परिवर्ती प्रवाह कहते हैं। दोलायमान पक्षक (ऐरोफ़ॉइल) अथवा स्थिर कुंद पिंड के पीछेवाला प्रवाह परिवर्ती होता है। वायुगतिविज्ञान में व्यवहृत अधिकांश समस्याएँ अपरिवर्ती प्रवाहवाली होती हैं। प्रवाह को एकविम, द्विविम या त्रिविम इस बात के अनुसार कहते हैं कि उसमें वेग, घनत्व और दाब केवल एक, दो या तीन आकाशचरों (अर्थात् निर्देशांकों) के फलन हैं। वात सुरंग (wind tunnel) की डिज़ाइन एक विम प्रवाह सिद्धांत का अनुप्रयोग है। द्विविम अर्थात् समतल प्रवाह में गति रेखाएँ, अर्थात् धारा रेखाएँ (stream lines), या तो एक ही समतल में होंगी या समांतर समतलों में होंगी, और तब इन समतलों में गति तत्सम होगी। अनंत विस्तारवाले पक्षक पर से प्रवाह द्विविम होता है, क्योंकि पक्षक के अनुप्रस्थ परिच्छेदों पर तत्सम प्रवाह मिलेगा। यदि पक्षक सीमित विस्तार का हो, तो त्रिविम प्रवाह प्राप्त होता है।

जब वेग इतना कम हो (लगभग २०० मील प्रति घंटा तक) कि वायु को द्रव के समान संपीड्य माना जा सके, तो प्रवाह को 'असंपीड्य प्रवाह' कहते हैं। वेग की दृष्टि से प्रवाह को अवध्वानिक (Subsonic), ट्रांसध्वानिक (Transonic), पराध्वनिक (Supersonic), या अतिध्वनिक (Hypersonic), इस तथ्य के अनुसार कहते हैं कि प्रवाहवेग ध्वनिवेग (लगभग ७६० मील प्रति घंटा) से कम, उसके निकट, उससे अधिक, या उससे कहीं अधिक है। पिंडजन्य दाबसंकेतों का वेग ध्वनिवेग से, आगेवाले पिंड के सापेक्ष उसके वेग को घटाने पर, या पीछेवाले पिंड के सापेक्ष उसके वेग को जोड़ देने पर, प्राप्त होता है। कालांतर पिंड के सापेक्ष उसके वेग को जोड़ देने पर, प्राप्त होता है। कालांतर में संकेत आकाश के सभी बिंदुओं पर पहुँच जाते हैं। अत्यंत न्यून अवध्वानिक वेगों पर दाबसंकेतों का संचरण (propagation) सभी दिशाओं में सममित होता है और यदि दाबसंकेतों का वेग अनंत माना जा सके, तो अवध्वानिक प्रवाह असंपीड्य प्रवाह जैसा हो जाता है। पराध्वानिक प्रवाह में दाबसंकेत आगे नहीं जा पाते और किसी बिंदु विशेष पर का विक्षोभ अनुप्रवाह दिशा में 'मेक' शंकु (mach cone) के भीतर ही सीमित रहता है। जैसा कि कार्मां ने सिद्ध किया है, अतिध्वानिक प्रवाह का वायुगति-विज्ञान कई बातों में न्यूटन के कणिकावाद (Corpuscular Theory) से मेल खाता है। रॉकेट उड़ान के विकास ने अतिध्वानिक प्रवाह के अध्ययन को प्रेरित किया। इस अध्ययन में शांकवीय प्रवाह के, जिसमें एक मूल बिंदुगामी त्रिज्यों के अनुदिश तरल गुण अपरिवर्तित रहते हैं, अनेकों अनुप्रयोग हैं।

अत्यंत ही विरल गैसों के वायुगतिविज्ञान को परमाणुगतिविज्ञान की संज्ञा दी गई है, क्योंकि अब पिंड के विस्तार की तुलना में गैस का माध्य मुक्तपथ उपेक्षणीय नहीं रहता। स्तरीय और विभव (laminar और potential) प्रवाहों की परिभाषाओं के लिए द्रव यांत्रिकी नामक लेख देखें। वहाँ तरल प्रवाह के मूलभूत नियम बर्नूली प्रमेय और वेंटुरी तथा पिटोट नलिकाओं में उसके अनुप्रयोग की व्याख्या दी गई है।

वायुगतिविज्ञान संबंधी घटनाओं को गणितीय प्रतिरूप द्वारा निरूपित करने का पहला ध्येय यह जानना होता है कि पिंड पर दाब किस प्रकार वितरित है और उसके कारण वायुयान के बाह्य और आंतरिक पृष्ठों पर क्या परिणामी बल और घूर्ण क्रियावंत हैं, जिससे उन्हें समुचित दृढ़ता का बनाया जा सके। दूसरे, वायुयान के एक अंग पर वायुप्रवाह का प्रकार ज्ञात करना, जिससे उसके प्रभाव का पुच्छपृष्ठ जैसे अन्य अंगों पर अध्ययन किया जा सके।

समरूप प्रवाह (Similar flows) - वायु जैसे अल्प श्यान तरल के गतिसमीकरण बन तो जाते हैं, किंतु सामान्यतया वे हल नहीं हो पाते। अतएव वैमानिकी (aeronautics) में प्रयोग कर फल प्राप्त किए जाते हैं; किंतु पूरे पैमानेवाले पिंडों पर प्रयोग करना अत्यंत व्यय और श्रमसाध्य है। पिडों के छोटे प्रतिरूपों को बात सुरंग (wind tunnal) में लटकाकर, समुचित वायुप्रवाह में उनकी प्रतिक्रिया देखी जाती है। दर्जीनिया में एक वातसुरंग ६०३० के परिच्छेदवाली है और इसमें ३५ व्यास के दो पंखे ४,००० अश्वसामर्थ्य की मोटर से चलते हैं। इसमें एक या दो सवारीवाला संपूर्ण वायुयान समा सकता है। वैमानिक समस्याओं में वायु को परिपूर्ण माना जा सकता है। उस स्थिति में यह गणितसिद्ध तथ्य है कि पिंड का परिमाण, अथवा उसका वेग, या तरल का घनत्व कुछ भी हो, समरूपत: गतिवान समरूप पिंडों से समरूप वायुप्रवाहों का जनन होगा। द्रव तरल के लिए भी यह सत्य है। यदि ४०० मील प्रति घंटे से बड़े वेगों का सामना हो, तो समरूपता के लिए यह ध्यान रखना होगा कि जलवाले प्रयोगों में वेगों का जलीय ध्वनिवेग से वही अनुपात रहे जो वायुवाले प्रयोगों में वायु का ध्वनिवेग से है, अर्थात् जलवाले वेग वायु वालों के लगभग चौगुने हों। श्यानता से प्रभावित तरल प्रवाहों में समरूपता के लिए आवश्यक है कि दोनों की रेनोल्ड संख्या, pvl m, वही रहे। यहाँ m तरल की श्यानता, r उसका घनत्व, v उस में होकर पिंड का वेग और १ उस पिंड का परिमाण परिभाषित करनेवाली कोई समुचित लंबाई है, जैसे वायुयान के लिए उसकी लंबाई और गोले के लिए उसका व्यास १ यदि किसी प्रवाह की रेनोल्ड संख्या लघु है, जो उस गति में श्यानता का महत्वपूर्ण प्रभाव होगा और वह सीरे, या भारी तेल, के जैसा प्रवाह देगा।

सुप्रवाही पिंड के परित: प्रवाह - परिकल्पित अश्यान (inviscid) तरल के सिद्धांत का एक निष्कर्ष यह है कि यदि कोई पिंड ऐसे तरल में चलता है जो केवल पिंड के कारण ही विरामावस्था को छोड़े हुए है, तो पिंड के परित: प्रवाहप्रकार अद्वितीय रूप से पिंड के आकार और उसकी गति से निर्धारित हो जाता है और पिंडपृष्ठ के विभिन्न बिंदुओं पर जो दाबें तरल लगाता है, उनका परिणामी शून्य होता हैं, भले ही उनका आघूर्ण शून्य न हो। यह स्थिति वायुयान पक्षक जैसे चपटे सुप्रवाही पिंड पर उपलब्ध होती है। जो भी थोड़ा बहुत कर्ष (drag) रहता है, वह केवल त्वक्घर्षण (skin friction), अर्थात् पृष्ठ पर वायुघर्षणजनित स्पर्शरेखीय बलों, के कारण होता है। बड़ी रेनोल्ड संख्यावाले प्रवाहों में त्वक्घर्षण पिंडपृष्ठ से लगी अत्यंत पतली परत में, जिसे परिसीमा स्तर (boundary layer) कहते हैं, सीमित रहता है। इस स्तर के भीतर का प्रवाह अत्यंत जटिल है। स्तर के बाहर का प्रवाह धारारेखी अश्यान तरल जैसा होना है। जब तक पक्षक का वेग से आपात कोण (incidence angle) अत्यधिक न हो, पक्षक के परित: प्रवाह धारारेखी होगा, कर्ष कम होगा और पक्षक पर उत्थापक बल (lift) लगाएगा, जो आपात कोण के साथ बढ़ेगा। यदि आपात कोण एक सीमा से बढ़ जाता है, तो प्रवाह धारारेखी न रह विक्षुब्ध (turbulent) हो जाता है और पक्ष अव्यवस्थित होने लगता है (अर्थात् stalls), कर्ष एकदम बए जाता है और उत्थापक बल आपात कोण के बढ़ने पर कुछ कम होने लगता है। कम आपात कोण की अवस्था में भी बलों का सैद्धांतिक विवेचन जटिल है; विशेषकर परिमित परिमाण के पक्षक में प्रेरि कर्ष (induced drag), पार्श्व कर्ष (profile drag) आदि, पर विचार करना होता है। मुक्त उड़ान (free flight) में स्थायित्व (stability) की समस्या भी उपस्थित हो जाती है। उड़ानविज्ञान में इनका विवेचन अत्यंत महत्व का है।

सं. ग्रं. - जी. पी. टॉमसन : ऐप्लाइड एयरोडाइनैमिक्स (१९२०); एल. बेरस्टो : ऐप्लाएड एयरोडाइनैमिक्स; एच. ग्लाउर्ट : दि एलिमेंटस ऑव एयरोफाइल ऐंड एअर स्क्रू थ्योरी (१९२६); ऐबट ऐंड एलबर्ट : थ्योरी ऑव विंग सेवशंस (१९६०); डबल्यू. एफ. डुरेंड : एयरोडइनैमिक थ्योरी (डावर); जे. एच. ड्विनैल : प्रिंसिपल्स ऑव एयरोडाइनैमिक्स (१९४९) मैकग्रॉ); ई. बर्नार्ड : डाइनैमिक्स ऑव फ्लाइट (१९५९, वाइले); एस. गोल्डस्टाइन : मॉडर्न डेवलेपमेंट्स इन फ्लूइड डाइनैमिक्स (१९३८); डबल्यू. कोफमेन : पलूइड मिकैनिक्स (१९६३), एम. कूथे ऐंड जे. डी. सेजर : फाउंडेशंस ऑव एयरोडाइनेमिक्स (१९५९ बाइले); एल. एम. मिलने टॉमसन : य्योरेटिकल एयरोडाइनैमिक्स (१९५२); ए. पोप : बेसिक विंग ऐंड एयरोफॉइल थ्योरी (१९५१) : फ्रेडिल : फंडामेंटल्स ऑव हाइड्रो ऐंड एयरोमिकैनिक्स (१९३४); टी. वी. कार्मां : एयरोडाइनैमिक्स (१९५४); एल. सी. वुर्ड्स: थ्योरी ऑन सबसोनिक फ्लो (१९६१)। (हरिचंद्र गुप्त)